HomeHealthInsulin-Like Hormones: Unveiling Their Impact on Brain Healt

Insulin-Like Hormones: Unveiling Their Impact on Brain Healt

Published on

Unlocking Brain's Secrets: Insulin-like Hormones Enhance Brain Plasticity! 🧠 Discover the Groundbreaking Research!

Insulin-like hormones, including insulin, insulin-like growth factor 1 (IGF1), and insulin-like growth factor 2 (IGF2), are crucial for regulating blood sugar, metabolism, and growth. However, recent research has identified a new mechanism through which these hormones facilitate brain plasticity, which is the brain’s ability to undergo structural and functional changes in response to environmental stimuli.

The Role of Insulin-like Hormones in Brain Health

Insulin-like hormones play a critical role in healthy brain development and function, including learning and memory. These hormones can enter the brain through the bloodstream from the liver or can be synthesized directly in neurons and glial cells within the brain. They bind to receptors, including the IGF1-Receptor, activating signals that modulate neuron growth and activity. Disruption of this signaling pathway is involved in cognitive decline and diseases such as Alzheimer’s.

Investigating the Activation of IGF Signaling in the Hippocampus

To understand how IGF1 and IGF2 promote brain health, scientists investigated the activation of this signaling pathway in the hippocampus, an area of the brain critical for learning and memory. Specifically, they wanted to explore whether IGF signaling was active during synaptic plasticity, the cellular process that strengthens connections between neurons during memory formation and protects against cognitive decline.

The Role of IGF Hormones in Synaptic Plasticity

Max Planck scientists developed a biosensor that detected when the IGF1-Receptor was active, allowing them to visualize the activity of the signaling pathway involved in plasticity. When a synapse was undergoing plasticity, the scientists observed that the IGF1-Receptor was robustly activated in the strengthening synapse and nearby synapses. This receptor activation was critical for synaptic growth and strengthening during plasticity. However, where the IGF that activates the receptor was coming from was unknown.

The Production of IGF1 and IGF2 in Hippocampal Neurons

Lead researcher and first author of the scientific publication, Dr. Xun Tu, described how being able to visualize the receptor activation during plasticity gave them a clue. “The fact that the activation of the IGF-Receptor was localized near the synapse undergoing plasticity suggested that IGF1 or IGF2 might be produced in hippocampal neurons and locally released during plasticity,” she explained.

To explore this hypothesis, the scientists tested whether IGF1 and IGF2 were produced and could be released from hippocampal neurons. Interestingly, they found a region-specific difference in the production of IGF1 and IGF2. One group of neurons in the hippocampus, CA1 neurons, produced IGF1; another group, CA3 neurons, produced IGF2.

The Critical Role of IGF Hormones in Maintaining Cognitive Health

When either CA1 or CA3 neurons were activated in a way that mimicked synaptic plasticity, IGF was released. Importantly, when the scientists disrupted the ability of the neurons to produce IGF, the activation of the IGF1-Receptor during plasticity and synaptic growth and strengthening was blocked.

Senior author on the publication and Max Planck Scientific Director, Dr. Ryohei Yasuda, summarized the findings. “This work reveals a local, autocrine mechanism in neurons that is critical for brain plasticity. When a synapse undergoes plasticity, IGF is released locally to activate the IGF1-Receptor on the same neuron. Disrupting this mechanism impairs the plasticity, highlighting its critical role in maintaining cognitive health.”

Conclusion

This discovery of this new mechanism sheds light on how memories are encoded in the brain and highlights the importance of further study on the insulin superfamily of hormones in the brain. The scientists hope that understanding the mechanism through which IGF hormones facilitate brain plasticity will lead to research into whether targeting this signaling pathway could prevent cognitive decline and combat diseases like Alzheimer’s.

Latest articles

Innovative AI Unveils Industrial Large-scale Model Products: Revolutionizing the Future of AI in Manufacturing

Discover how Qingdao Innovative AI Technology Group is revolutionizing the manufacturing industry with its industrial large-scale model products.

Unveiling the Decline in ChatGPT Popularity: A Comprehensive Analysis

Uncover the reasons behind ChatGPT's declining popularity with this comprehensive analysis.

The Impact of AI on Jobs: Embracing Change and Adaptation

Discover the impact of AI on jobs and learn how it is reshaping the job market. Explore the concept of displacement versus elimination, and uncover opportunities for growth and innovation.

Revolutionizing Code Generation: Meta AI Code Llama

Explore Code Llama by Meta AI - A pioneering AI for coding that merges natural language and intricate code creation.

More like this

Innovative AI Unveils Industrial Large-scale Model Products: Revolutionizing the Future of AI in Manufacturing

Discover how Qingdao Innovative AI Technology Group is revolutionizing the manufacturing industry with its industrial large-scale model products.

Unveiling the Decline in ChatGPT Popularity: A Comprehensive Analysis

Uncover the reasons behind ChatGPT's declining popularity with this comprehensive analysis.

The Impact of AI on Jobs: Embracing Change and Adaptation

Discover the impact of AI on jobs and learn how it is reshaping the job market. Explore the concept of displacement versus elimination, and uncover opportunities for growth and innovation.